题目内容
在△ABC中,A,B,C的对边分别为a,b,c,向量
=(a,b),
=(b,c).
(Ⅰ)若向量
∥
求满足
sinB+cosB-
=0的角B的值;
(Ⅱ)若A-C=
,试用角B表示角A与C;
(Ⅲ)若
•
=2b2,且A-C=
,求cosB的值.
| m |
| n |
(Ⅰ)若向量
| m |
| n |
| 3 |
| 3 |
(Ⅱ)若A-C=
| π |
| 3 |
(Ⅲ)若
| m |
| n |
| π |
| 3 |
(Ⅰ)∵
=(a,b),
=(b,c),
∥
,
∴b2=ac,
∴cosB=
≥
=
,
当且仅当a=c时取等号,
∵0<B<π,∴0<B≤
.
由
sinB+cosB-
=0
得:sin(B+
)=
,
∵B+
∈(
,
],
∴B+
=
,∴B=
.
(Ⅱ)在△ABC中,∵A-C=
,A+C=π-B,∴A=
-
,C=
-
(Ⅲ)∵
•
=2b2,
∴a+c=2b,
∴sinA+sinC=2sinB,
由A-C=
及(Ⅱ)的结论得:
∴sin(
-
)+sin(
-
)=2sinB,
展开化简,得
cos
=2×2sin
cos
,
∵cos
≠0,∴sin
=
,
∴cosB=1-2sin2
=1-
=
.
| m |
| n |
| m |
| n |
∴b2=ac,
∴cosB=
| a2+c2-b2 |
| 2ac |
| 2ac-ac |
| 2ac |
| 1 |
| 2 |
当且仅当a=c时取等号,
∵0<B<π,∴0<B≤
| π |
| 3 |
由
| 3 |
| 3 |
得:sin(B+
| π |
| 6 |
| ||
| 2 |
∵B+
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
∴B+
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
(Ⅱ)在△ABC中,∵A-C=
| π |
| 3 |
| 2π |
| 3 |
| B |
| 2 |
| π |
| 3 |
| B |
| 2 |
(Ⅲ)∵
| m |
| n |
∴a+c=2b,
∴sinA+sinC=2sinB,
由A-C=
| π |
| 3 |
∴sin(
| 2π |
| 3 |
| B |
| 2 |
| π |
| 3 |
| B |
| 2 |
展开化简,得
| 3 |
| B |
| 2 |
| B |
| 2 |
| B |
| 2 |
∵cos
| B |
| 2 |
| B |
| 2 |
| ||
| 4 |
∴cosB=1-2sin2
| B |
| 2 |
| 3 |
| 8 |
| 5 |
| 8 |
练习册系列答案
相关题目
在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是( )
A、
| ||||
| B、1 | ||||
C、
| ||||
D、
|