题目内容
(2013•淄博一模)设数列{an}的前n项和为Sn,点(an,Sn)在直线y=
x-1上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{
}的前n项和Tn.
| 3 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{
| 1 |
| dn |
分析:(Ⅰ)由题设知,Sn=
an-1,得Sn-1=
an-1-1(n∈N*,n≥2),两式相减可得数列递推式,由此可判断数列{an}为等比数列,从而可得其通项公式;
(Ⅱ)由(Ⅰ)可得an+1,an,根据等差数列的通项公式可得dn,从而可得
,令Tn=
+
+
+…+
,则Tn=
+
+…+
,利用错位相减法即可求得Tn;
| 3 |
| 2 |
| 3 |
| 2 |
(Ⅱ)由(Ⅰ)可得an+1,an,根据等差数列的通项公式可得dn,从而可得
| 1 |
| dn |
| 1 |
| d1 |
| 1 |
| d2 |
| 1 |
| d3 |
| 1 |
| dn |
| 2 |
| 4×30 |
| 3 |
| 4×31 |
| n+1 |
| 4×3n-1 |
解答:解:(Ⅰ)由题设知,Sn=
an-1,得Sn-1=
an-1-1(n∈N*,n≥2),
两式相减得:an=
(an-an-1),即an=3an-1(n∈N*,n≥2),
又S1=
a1-1得a1=2,
所以数列{an}是首项为2,公比为3的等比数列,
所以an=2•3n-1;
(Ⅱ)由(Ⅰ)知an+1=2•3n,an=2•3n-1,
因为an+1=an+(n+1)dn,所以dn=
,
所以
=
,
令Tn=
+
+
+…+
,
则Tn=
+
+
+…+
①,
Tn=
+
+
+…+
②,
①-②得
Tn=
+
+
+…+
-
=
+
×
-
=
-
,
∴Tn=
-
;
| 3 |
| 2 |
| 3 |
| 2 |
两式相减得:an=
| 3 |
| 2 |
又S1=
| 3 |
| 2 |
所以数列{an}是首项为2,公比为3的等比数列,
所以an=2•3n-1;
(Ⅱ)由(Ⅰ)知an+1=2•3n,an=2•3n-1,
因为an+1=an+(n+1)dn,所以dn=
| 4×3n-1 |
| n+1 |
所以
| 1 |
| dn |
| n+1 |
| 4×3n-1 |
令Tn=
| 1 |
| d1 |
| 1 |
| d2 |
| 1 |
| d3 |
| 1 |
| dn |
则Tn=
| 2 |
| 4×30 |
| 3 |
| 4×31 |
| 4 |
| 4×32 |
| n+1 |
| 4×3n-1 |
| 1 |
| 3 |
| 2 |
| 4×31 |
| 3 |
| 4×32 |
| 4 |
| 4×33 |
| n+1 |
| 4×3n |
①-②得
| 2 |
| 3 |
| 2 |
| 4×30 |
| 1 |
| 4×31 |
| 1 |
| 4×32 |
| 1 |
| 4×3n-1 |
| n+1 |
| 4×3n |
=
| 1 |
| 2 |
| 1 |
| 4 |
| ||||
1-
|
| n+1 |
| 4×3n |
| 5 |
| 8 |
| 2n+5 |
| 8×3n |
∴Tn=
| 15 |
| 16 |
| 2n+5 |
| 16×3n-1 |
点评:本题考查数列的函数特性、由数列递推式求通项公式、等差数列及错位相减法求数列的前n项和,考查学生综合运用知识解决问题的能力,综合性较强,能力要求较高.
练习册系列答案
相关题目