题目内容
已知函数f(x)=ln(2x+1)+e3x(4x2+2x+6),
(1)求
的值;
(2)求曲线y=f(x)在点(0,f(0))处的切线方程.
(1)求
| lim |
| x→0 |
| f(x)-6 |
| x |
(2)求曲线y=f(x)在点(0,f(0))处的切线方程.
(1)f(x)=ln(2x+1)+e3x(4x2+2x+6),
∴f(0)=6,f′(x)=
+3e3x(4x2+2x+6)+e3x(8x+2)
∴
=
=f′(0)=22
(2)曲线y=f(x)在点(0,f(0))处的切线斜率k=f′(0)=22
∴曲线y=f(x)在点(0,f(0))处的切线方程为y-6=22x即22x-y+6=0
∴f(0)=6,f′(x)=
| 2 |
| 2x+1 |
∴
| lim |
| x→0 |
| f(x)-6 |
| x |
| lim |
| x→0 |
| f(x)-f(0) |
| x-0 |
(2)曲线y=f(x)在点(0,f(0))处的切线斜率k=f′(0)=22
∴曲线y=f(x)在点(0,f(0))处的切线方程为y-6=22x即22x-y+6=0
练习册系列答案
相关题目