题目内容
若数列{an}是等比数列,an>0,公比q≠1,已知lga2是lga1和1+lga4的等差中项,且a1a2a3=1.
(1)求{an}的通项公式;
(2)设bn=
(n∈N*),Tn=b1+b2+…+bn,求Tn.
(1)求{an}的通项公式;
(2)设bn=
| 1 | n(3-lgan) |
分析:(1)依题意,可求得等比数列{an}的公比q=
,首项a1=10,从而可求得{an}的通项公式;
(2)由(1)知,an=102-n,于是由裂项法可知,bn=
-
,从而可求Tn=b1+b2+…+bn.
| 1 |
| 10 |
(2)由(1)知,an=102-n,于是由裂项法可知,bn=
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)由题知2lga2=lga1+(1+lga4),即:lga22=lg10a1a4,
则a22=10a1a4=10a12q3,
∵a1>0,q2>0,
∴q=
.(3分)
又a1a2a3=1,
∴a13q3=a13(
)3=1,
∴a13=1000,
∴a1=10,(6分)
∴an=10×(
)n-1=102-n,(8分)
(2)bn=
=
=
-
(10分)
∴Tn=b1+b2+…+bn
=(1-
)+(
-
)+…+(
-
)
=1-
=
(12分)
则a22=10a1a4=10a12q3,
∵a1>0,q2>0,
∴q=
| 1 |
| 10 |
又a1a2a3=1,
∴a13q3=a13(
| 1 |
| 10 |
∴a13=1000,
∴a1=10,(6分)
∴an=10×(
| 1 |
| 10 |
(2)bn=
| 1 |
| n(3-lgan) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=b1+b2+…+bn
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
点评:本题考查数列的求和,着重考查等差数列与等比数列的通项公式与裂项法求和,考查对数的运算性质,属于中档题.
练习册系列答案
相关题目