题目内容
设f(x)=sin4x-sinxcosx+cos4x,则f(x)的值域是______.
f(x)=sin4x-sinxcosx+cos4x=1-
sin2x-
sin22x. 令t=sin2x,
则f(x)=g(t)=1-
t-
t2 =
-
(t+
)2 ,且-1≤t≤1.
故当t=-
时,f(x)取得最大值为
,当t=1时,f(x)取得最小值为 0,
故,f(x)∈[0,
],即 f(x)的值域是[0,
],
故答案为[0,
].
| 1 |
| 2 |
| 1 |
| 2 |
则f(x)=g(t)=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 9 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
故当t=-
| 1 |
| 2 |
| 9 |
| 8 |
故,f(x)∈[0,
| 9 |
| 8 |
| 9 |
| 8 |
故答案为[0,
| 9 |
| 8 |
练习册系列答案
相关题目