题目内容
设数列{an}满足a1+2a2=3,且对任意的n∈N*,点Pn(n,an)都有
=(1,2),则{an}的前n项和Sn为( )
| PnPn+1 |
A.n(n-
| B.n(n-
| C.n(n-
| D.n(n-
|
∵Pn(n,an),∴Pn+1(n+1,an+1),故
=(1,an+1-an) =(1,2)
an+1-an=2,∴an是等差数列,公差d=2,将a2=a1+2,代入a1+2a2=3中,
解得a1=-
,∴an=-
+2(n-1)=2n-
∴Sn=
n=
n=(n-
)n,
故选A.
| PnPn+1 |
an+1-an=2,∴an是等差数列,公差d=2,将a2=a1+2,代入a1+2a2=3中,
解得a1=-
| 1 |
| 3 |
| 1 |
| 3 |
| 7 |
| 3 |
∴Sn=
| a1+an |
| 2 |
-
| ||||
| 2 |
| 4 |
| 3 |
故选A.
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|