题目内容

已知在△ABC中,c=10,A=45°,C=30°,求a,b和B.
由正弦定理可知
a
sinA
=
c
sinc

∴a═
c
sinc
•sinA=
10
1
2
×
2
2
=10
2

因为A=45°,C=30°,所以B=180°-45°-30°=105°,
c
sinc
=
b
sinB

所以b=
csinB
sinc
=
10sin105°
sin30°
=5(
2
+
6
).
所以a,b和B分别为:10
2
,5(
2
+
6
),105°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网