题目内容
已知数列{an}是首项为a1=
,公比q=
的等比数列.设bn+2=3log
an(n∈N*),数列{cn}满足cn=
.
(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn.
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| bn•bn+1 |
(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn.
分析:(Ⅰ)依题意,可求得an=(
)n,从而可求得bn=3n-2;利用等差数列的定义判断即可;
(Ⅱ)利用裂项法可求得cn=
(
-
),从而可求得数列{cn}的前n项和Sn.
| 1 |
| 4 |
(Ⅱ)利用裂项法可求得cn=
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
解答:证明:(Ⅰ)∵数列{an}是首项为a1=
,公比q=
的等比数列,
∴an=
•(
)n-1=(
)n,
∵bn+2=3log
an=3log
(
)n=3n(n∈N*),
∴bn=3n-2;
∴bn+1-bn=3(n+1)-2-(3n-2)=3,
∴数列{bn}是以1为首项,3为公差的成等差数列.
(Ⅱ)∵cn=
=
=
(
-
),
∵数列{cn}的前n项和为Sn,
∴Sn=c1+c2+…+cn
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
| 1 |
| 4 |
| 1 |
| 4 |
∴an=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
∵bn+2=3log
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
∴bn=3n-2;
∴bn+1-bn=3(n+1)-2-(3n-2)=3,
∴数列{bn}是以1为首项,3为公差的成等差数列.
(Ⅱ)∵cn=
| 1 |
| bn•bn+1 |
| 1 |
| (3n-2)[3(n+1)-2] |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∵数列{cn}的前n项和为Sn,
∴Sn=c1+c2+…+cn
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
=
| n |
| 3n+1 |
点评:本题考查等差关系的确定及数列的求和,突出考查对数的运算性质及等比数列的通项公式与等差数列的判定,考查裂项法求和,属于中档题.
练习册系列答案
相关题目