题目内容

已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列.设bn+2=3log
1
4
an
(n∈N*),数列{cn}满足cn=
1
bnbn+1

(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn
分析:(Ⅰ)依题意,可求得an=(
1
4
)
n
,从而可求得bn=3n-2;利用等差数列的定义判断即可;
(Ⅱ)利用裂项法可求得cn=
1
3
1
3n-2
-
1
3n+1
),从而可求得数列{cn}的前n项和Sn
解答:证明:(Ⅰ)∵数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,
∴an=
1
4
(
1
4
)
n-1
=(
1
4
)
n

∵bn+2=3log
1
4
an=3log
1
4
(
1
4
)
n
=3n(n∈N*),
∴bn=3n-2;
∴bn+1-bn=3(n+1)-2-(3n-2)=3,
∴数列{bn}是以1为首项,3为公差的成等差数列.
(Ⅱ)∵cn=
1
bn•bn+1
=
1
(3n-2)[3(n+1)-2]
=
1
3
1
3n-2
-
1
3n+1
),
∵数列{cn}的前n项和为Sn
∴Sn=c1+c2+…+cn
=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]
=
1
3
(1-
1
3n+1

=
n
3n+1
点评:本题考查等差关系的确定及数列的求和,突出考查对数的运算性质及等比数列的通项公式与等差数列的判定,考查裂项法求和,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网