题目内容
数列{an}的前n项和为sn,sn=
n2+
n,则数列{
}的前100项的和为( )
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| anan+1 |
A.
| B.
| C.
| D.
|
∵sn=
n2+
n,
当n=1时,a1=s1=1
当n≥2时,an=sn-sn-1=
n2+
n-
(n-1)2-
(n-1)=n
而n=1时,a1=1适合上式
故an=n
∴S100=1-
+
-
+…+
-
=1-
=
故选A
| 1 |
| 2 |
| 1 |
| 2 |
当n=1时,a1=s1=1
当n≥2时,an=sn-sn-1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
而n=1时,a1=1适合上式
故an=n
∴S100=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 100 |
| 1 |
| 101 |
| 1 |
| 101 |
| 100 |
| 101 |
故选A
练习册系列答案
相关题目