题目内容
给出下列命题:①若
| a |
| b |
| a |
| b |
| 0 |
②已知
| a |
| b |
| c |
| a |
| b |
| 0 |
| a |
| c |
| b |
| c |
③在△ABC中,a=5,b=8,c=7,则
| BC |
| CA |
④
| a |
| b |
| a |
| b |
| a |
| b |
其中真命题的序号是
分析:①由
2+
2=0,可得|
|=|
|=0,从而可得出答案;②
+
=0,∴
=-
,|
•
|=|
||
||cos<
,
>|,|
•
|=|
||
||cos<
,
>|=|
||
||cos<-
,
>|=|
||
||cos(π-<
,
>)|=|
||
||cos<
,
>|.即可判断;③由cosC=
=
=
.
•
=|
||
|cos(π-C)=5×8×(-
)=-20即可判断;④
与
是共线向量?
=λ
(
≠0)?
•
=λ
2,而|
||
|=|λ
||
|=|λ||
|2即可判断对错.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| c |
| a |
| c |
| a |
| c |
| b |
| c |
| b |
| c |
| b |
| c |
| a |
| c |
| a |
| c |
| a |
| c |
| a |
| c |
| a |
| c |
| a |
| c |
| a2+b2-c2 |
| 2ab |
| 25+64-49 |
| 2×5×8 |
| 1 |
| 2 |
| BC |
| CA |
| BC |
| CA |
| 1 |
| 2 |
| a |
| b |
| a |
| b |
| b |
| a |
| b |
| b |
| a |
| b |
| b |
| b |
| b |
解答:解:根据向量的有关性质,依次分析可得:
①由
2+
2=0,可得|
|=|
|=0,∴
=
=
.∴①正确.
②
+
=0,∴
=-
,|
•
|=|
||
||cos<
,
>|,|
•
|=|
||
||cos<
,
>|=|
||
||cos<-
,
>|=
|
||
||cos(π-<
,
>)|=|
||
||cos<
,
>|.∴②正确.
③cosC=
=
=
.
•
=|
||
|cos(π-C)=5×8×(-
)=-20.∴③不正确.
④
与
是共线向量?
=λ
(
≠0)?
•
=λ
2,而|
||
|=|λ
||
|=|λ||
|2.
∴④不正确.
故答案为:①②.
①由
| a |
| b |
| a |
| b |
| a |
| b |
| 0 |
②
| a |
| b |
| a |
| b |
| a |
| c |
| a |
| c |
| a |
| c |
| b |
| c |
| b |
| c |
| b |
| c |
| a |
| c |
| a |
| c |
|
| a |
| c |
| a |
| c |
| a |
| c |
| a |
| c |
③cosC=
| a2+b2-c2 |
| 2ab |
| 25+64-49 |
| 2×5×8 |
| 1 |
| 2 |
| BC |
| CA |
| BC |
| CA |
| 1 |
| 2 |
④
| a |
| b |
| a |
| b |
| b |
| a |
| b |
| b |
| a |
| b |
| b |
| b |
| b |
∴④不正确.
故答案为:①②.
点评:本题考查了四种命题的真假及平面向量数量积的运算,属于基础题,关键是注意细心运算.
练习册系列答案
相关题目