题目内容
椭圆
+
=1(a>b>0)与直线y=x+1交于P,Q两点 且|PQ|=
,a2+b2=2a2b2.求椭圆方程.
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
分析:把直线y=x+1代入椭圆
+
=1(a>b>0),得b2x2+a2(x+1)2=a2b2,所以(a2+b2)x2+2a2x+a2=a2b2,由a2+b2=2a2b2,得2b2x2+2x+1-b2=0,设P(x1,y1),Q(x2,y2),则x1+x2=-
,x1x2=
,k=1,故|PQ|=
=
=
,由此能求出椭圆方程.
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 2b2 |
| 1-b2 |
| 2b2 |
| (1+k2)[(x1+x2)2-4x1x2] |
| ||
| b2 |
| ||
| 2 |
解答:解:把直线y=x+1代入椭圆
+
=1(a>b>0),
得b2x2+a2(x+1)2=a2b2,
∴(a2+b2)x2+2a2x+a2=a2b2,
∵a2+b2=2a2b2,
∴2a2b2x2+2a2x+a2=a2b2,
∴2b2x2+2x+1-b2=0,
设P(x1,y1),Q(x2,y2),
则x1+x2=-
,x1x2=
,k=1,
∴|PQ|=
=
=
=
,
解得b2=2或b2=
.
当b2=2时,由a2+b2=2a2b2,解得a2=
(舍)
当b2=
时,由a2+b2=2a2b2,解得a2=2.
∴椭圆方程为:
+
y2=1.
| x2 |
| a2 |
| y2 |
| b2 |
得b2x2+a2(x+1)2=a2b2,
∴(a2+b2)x2+2a2x+a2=a2b2,
∵a2+b2=2a2b2,
∴2a2b2x2+2a2x+a2=a2b2,
∴2b2x2+2x+1-b2=0,
设P(x1,y1),Q(x2,y2),
则x1+x2=-
| 2 |
| 2b2 |
| 1-b2 |
| 2b2 |
∴|PQ|=
| (1+k2)[(x1+x2)2-4x1x2] |
=
2(
|
=
| ||
| b2 |
| ||
| 2 |
解得b2=2或b2=
| 2 |
| 3 |
当b2=2时,由a2+b2=2a2b2,解得a2=
| 2 |
| 3 |
当b2=
| 2 |
| 3 |
∴椭圆方程为:
| x2 |
| 2 |
| 3 |
| 2 |
点评:本题考查直线与椭圆的位置关系,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目