题目内容
已知数列{an}的前n项和,Sn=n2+2n+1.
(1)求数列{an}的通项公式an;
(2)记Tn=
+
+…+
,求Tn.
(1)求数列{an}的通项公式an;
(2)记Tn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
(I)当n=1时,a1=S1=4,
当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,
又a1=4不适合上式,
∴an=
(II)∵
=
,
当n≥2时,
=
=
(
-
),
∴Tn=
+
(
-
+
-
+…+
-
)
=
+
(
-
)=
-
.
当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,
又a1=4不适合上式,
∴an=
|
(II)∵
| 1 |
| a1a2 |
| 1 |
| 4×5 |
当n≥2时,
| 1 |
| anan+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=
| 1 |
| 4×5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2n+3 |
| 3 |
| 20 |
| 1 |
| 2(2n+3) |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |