题目内容
函数f(x)=cos(-
)+sin(π-
)(x∈R).
(1)求f(x)的周期;
(2)若f(α)=
,α∈(0,
),求tan(α+
)的值.
| x |
| 2 |
| x |
| 2 |
(1)求f(x)的周期;
(2)若f(α)=
2
| ||
| 5 |
| π |
| 2 |
| π |
| 4 |
(1)由题意知,f(x)=cos(-
)+sin(π-
)=sin
+cos
=
sin(
+
)
∴f(x)的周期T=
=4π(4分)
(2)由f(a)=
代入解析式得,sin
+cos
=
,
两边平方得:1+sinα=
,则sinα=
,
∵α∈(0,
),∴cosα=
=
=
,(8分)
∴tanα=
=
,
∴tan(α+
)=
=
=7(12分)
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 2 |
| x |
| 2 |
| π |
| 4 |
∴f(x)的周期T=
| 2π | ||
|
(2)由f(a)=
2
| ||
| 5 |
| α |
| 2 |
| α |
| 2 |
2
| ||
| 5 |
两边平方得:1+sinα=
| 8 |
| 5 |
| 3 |
| 5 |
∵α∈(0,
| π |
| 2 |
| 1-sin2α |
1-
|
| 4 |
| 5 |
∴tanα=
| sinα |
| cosα |
| 3 |
| 4 |
∴tan(α+
| π |
| 4 |
tanα+tan
| ||
1-tanαtan
|
| ||
1-
|
练习册系列答案
相关题目