题目内容
数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.
(1)设cn=an-1,求证:数列{cn}是等比数列;
(2)求数列{bn}的通项公式.
(1)设cn=an-1,求证:数列{cn}是等比数列;
(2)求数列{bn}的通项公式.
(1)证明:∵a1=S1,an+Sn=n,∴a1+S1=1,得a1=
.
又an+1+Sn+1=n+1,两式相减得2(an+1-1)=an-1,即
=
,
也即
=
,故数列{cn}是等比数列.
(2)∵c1=a1-1=-
,
∴cn=-
,an=cn+1=1-
,an-1=1-
.
故当n≥2时,bn=an-an-1=
-
=
.
又b1=a1=
,即bn=
(n∈N*).
| 1 |
| 2 |
又an+1+Sn+1=n+1,两式相减得2(an+1-1)=an-1,即
| an+1-1 |
| an-1 |
| 1 |
| 2 |
也即
| cn+1 |
| cn |
| 1 |
| 2 |
(2)∵c1=a1-1=-
| 1 |
| 2 |
∴cn=-
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n-1 |
故当n≥2时,bn=an-an-1=
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n |
又b1=a1=
| 1 |
| 2 |
| 1 |
| 2n |
练习册系列答案
相关题目