题目内容

等差数列{an}的前n项和为Sn,已知am-1+am+1-
a2m
=0
,S2m-1=38,则m=(  )
A.9B.10C.20D.38
根据等差数列的性质可得:am-1+am+1=2am
则am-1+am+1-am2=am(2-am)=0,
解得:am=0或am=2,
又S2m-1=
(2m-1)(a1+a2m-1)
2
=(2m-1)am
若am=0,显然(2m-1)am=38不成立,故应有am=2
此时S2m-1=(2m-1)am=4m-2=38,解得m=10
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网