题目内容
定义在R上的函数f(x),对任意实数x∈R,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2成立,且f(1)=2,记an=f(n)(n∈N*),则a2008=
2009
2009
.分析:先根据题意利用夹逼原理求出f(x+1)=f(x)+1,再由an=f(n)(n∈N*),f(x+1)=f(x)+1知道数列{an}的递推关系,又由f(1)=2,可以判断数列{an}是等差数列,通过等差数列的定义,求出其通项公式,从而求得a2008的值.
解答:解:∵对任意实数x∈R,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2成立
∴f(x)+4≤f(x+2)+2≤f(x+4)≤f(x+1)+3≤f(x+3)+1≤f(x)+4
即f(x)+1≤f(x+1)≤f(x)+1
∴f(x+1)=f(x)+1
:∵an=f(n),f(x+1)=f(x)+1
∴an+1=an+1,又知a1=f(1)=2,所以有等差数列的定义,
可知数列{an}是以首项为2,公差为1的等差数列.
∴an=2+(n-1)×1=n+1,
∴a2008=2009.
故答案为:2009.
∴f(x)+4≤f(x+2)+2≤f(x+4)≤f(x+1)+3≤f(x+3)+1≤f(x)+4
即f(x)+1≤f(x+1)≤f(x)+1
∴f(x+1)=f(x)+1
:∵an=f(n),f(x+1)=f(x)+1
∴an+1=an+1,又知a1=f(1)=2,所以有等差数列的定义,
可知数列{an}是以首项为2,公差为1的等差数列.
∴an=2+(n-1)×1=n+1,
∴a2008=2009.
故答案为:2009.
点评:此题考查函数与数列的关系,及等差数列的定义,同时考查了不等式的夹逼法则,是一道综合题,有一定的难度.
练习册系列答案
相关题目