题目内容
已知数列{an}满足a1=2,an+1=2(
)2an
(1)求数列{an}的通项公式
(2)设bn=(An2+Bn+C)•2n,是否存在常数A、B、C,使对一切n∈N*,均有an=bn+1-bn成立?若存在,求出常数A、B、C的值,若不存在,说明理由
(3)求证:a1+a2+…+an≤(n2-2n+2)•2n,( n∈N*)
| n+1 |
| n |
(1)求数列{an}的通项公式
(2)设bn=(An2+Bn+C)•2n,是否存在常数A、B、C,使对一切n∈N*,均有an=bn+1-bn成立?若存在,求出常数A、B、C的值,若不存在,说明理由
(3)求证:a1+a2+…+an≤(n2-2n+2)•2n,( n∈N*)
(1)由an+1=2(
)2an得:
a2=2(
) 2a1?a2=2(
) 2a1
a3=2(
) 2a2?a3=2(
) 2a2
…
an=2(
) 2an-1?an=2(
) 2an-1
将这n-1个式子相乘,得an=2n-1n2a1=2n•n2,
(2)∵bn=(An2+Bn+C)•2n
∴bn+1=(A(n+1)2+B(n+1)+C)•2n+1
∴bn+1-bn=(A(n+1)2+B(n+1)+C)•2n+1-(An2+Bn+C)•2n
=(An2+(4A+B)n+2A+2B+C)•2n
若an=bn+1-bn成立,则2n•n2=(An2+(4A+B)n+2A+2B+C)•2n对一切正整数n都成立
∴An2+(4A+B)n+2A+2B+C=n2
∴
?A=1,B=-4,C=6;
(3)用数学归纳法进行证明:
当n=1时,a1=2≤(12-2×1+2)•21:=2,式子成立
当n≥2时,设n=k时不等式成立,
即a1+a2+…+ak≤(k2-2k+2)•2k成立,则
a1+a2+…+ak+ak+1≤(k2-2k+2)•2k+2k+1•(k+1)2
而(k2-2k+2)•2k+2k+1•(k+1)2=2k+1[(
k2-k+1)+(k2+2k+1)]
=2k+1(
k2+k+2)
并且2k+1(
k2+k+2)≤((k+1)2-2(k+1)+2)•2k+1,
∴a1+a2+…+ak+ak+1)≤((k+1)2-2(k+1)+2)•2k+1
即n=k+1时不等式成立,
综上所述,可得对任意 n∈N*,a1+a2+…+an≤(n2-2n+2)•2n 总成立
| n+1 |
| n |
a2=2(
| 1+1 |
| 1 |
| 2 |
| 1 |
a3=2(
| 2+1 |
| 2 |
| 3 |
| 2 |
…
an=2(
| n-1+1 |
| n-1 |
| n |
| n-1 |
将这n-1个式子相乘,得an=2n-1n2a1=2n•n2,
(2)∵bn=(An2+Bn+C)•2n
∴bn+1=(A(n+1)2+B(n+1)+C)•2n+1
∴bn+1-bn=(A(n+1)2+B(n+1)+C)•2n+1-(An2+Bn+C)•2n
=(An2+(4A+B)n+2A+2B+C)•2n
若an=bn+1-bn成立,则2n•n2=(An2+(4A+B)n+2A+2B+C)•2n对一切正整数n都成立
∴An2+(4A+B)n+2A+2B+C=n2
∴
|
(3)用数学归纳法进行证明:
当n=1时,a1=2≤(12-2×1+2)•21:=2,式子成立
当n≥2时,设n=k时不等式成立,
即a1+a2+…+ak≤(k2-2k+2)•2k成立,则
a1+a2+…+ak+ak+1≤(k2-2k+2)•2k+2k+1•(k+1)2
而(k2-2k+2)•2k+2k+1•(k+1)2=2k+1[(
| 1 |
| 2 |
=2k+1(
| 3 |
| 2 |
并且2k+1(
| 3 |
| 2 |
∴a1+a2+…+ak+ak+1)≤((k+1)2-2(k+1)+2)•2k+1
即n=k+1时不等式成立,
综上所述,可得对任意 n∈N*,a1+a2+…+an≤(n2-2n+2)•2n 总成立
练习册系列答案
相关题目