题目内容
已知等差数列{an}的前n项和为Sn,公差d≠0,a1=1,且a1,a2,a7成等比数列.(1)求数列{an}的前n项和Sn;
(2)设bn=
| 2Sn |
| 2n-1 |
| 64bn |
| (n+9)bn+1 |
分析:(1)由题意知,(a1+d)2=a1(a1+6d),由此能够推出Sn=na1+
d=n+2n(n-1)=2n2-n.
(2)证明:由题设条件可以推出{bn}是首项为2,公差为2的等差数列,所以Tn=
=n2+n,由此入手能够得到2Tn-9bn-1+18>
(n>1).
| n(n-1) |
| 2 |
(2)证明:由题设条件可以推出{bn}是首项为2,公差为2的等差数列,所以Tn=
| n(2+2n) |
| 2 |
| 64bn |
| (n+9)bn+1 |
解答:解:(1)∵a1,a2,a7成等比数列,
∴a22=a1•a7,即(a1+d)2=a1(a1+6d),
又a1=1,d≠0,∴d=4.
∴Sn=na1+
d=n+2n(n-1)=2n2-n.
(2)证明:由(1)知bn=
=
=2n,
∴{bn}是首项为2,公差为2的等差数列,
∴Tn=
=n2+n,
∴2Tn-9bn-1+18=2n2+2n-18(n-1)+18
=2n2-16n+36=2(n2-8n+16)+4=2(n-4)2+4≥4,当且仅当n=4时取等号.①
=
=
=
≤
=4.
当且仅当n=
即n=3时,取等号.②
∵①②中等号不能同时取到,∴2Tn-9bn-1+18>
(n>1).
∴a22=a1•a7,即(a1+d)2=a1(a1+6d),
又a1=1,d≠0,∴d=4.
∴Sn=na1+
| n(n-1) |
| 2 |
(2)证明:由(1)知bn=
| 2Sn |
| 2n-1 |
| 2n(2n-1) |
| 2n-1 |
∴{bn}是首项为2,公差为2的等差数列,
∴Tn=
| n(2+2n) |
| 2 |
∴2Tn-9bn-1+18=2n2+2n-18(n-1)+18
=2n2-16n+36=2(n2-8n+16)+4=2(n-4)2+4≥4,当且仅当n=4时取等号.①
| 64bn |
| (n+9)bn+1 |
| 64×2n |
| (n+9)×2(n+1) |
| 64n |
| n2+10n+9 |
| 64 | ||
n+
|
| 64 |
| 6+10 |
当且仅当n=
| 9 |
| n |
∵①②中等号不能同时取到,∴2Tn-9bn-1+18>
| 64bn |
| (n+9)bn+1 |
点评:本题考查数列的性质和运算,具有一定的难度,解题时要认真审题,仔细解答,避免出错.
练习册系列答案
相关题目