题目内容
已知数列{an}为首项a1≠0,公差为d≠0的等差数列,求Sn=| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
分析:由等差数列的性质可得,
=
(
-
),利用裂项求和即可.
| 1 |
| anan+1 |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
解答:解:由等差数列的性质可得,
=
(
-
)
∴Sn=
[(
-
)+(
-
)+…+(
-
)]=
(
-
)=
=
.
| 1 |
| anan+1 |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
∴Sn=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| d |
| an+1-a1 |
| a1an+1 |
=
| n |
| a1(a1+nd) |
点评:本题主要考查数列求和的裂项法、等差数列的性质及前n项和公式.考查学生的运算能力.
练习册系列答案
相关题目