题目内容

已知数列{an}满足a1=1,an+1=2an+1(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an}前n项和Sn
(1)∵an+1=2an+1,
∴an+1+1=2(an+1),
所以数列{an+1}是以a1+1=2为首项,以2为公比的等比数列,
an+1=2n
an=2n-1.
(2)∵an=2n-1,
∴数列{an}前n项和Sn=a1+a2+a3+…+an
=(2-1)+(22-1)+(23-1)+…+(2n-1)
=(2+22+23+…+2n)-n
=
2(1-2n)
1-2
-n
=2n+1-n-2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网