题目内容
已知等比数列{an},其前n项和为Sn,且a1+a3=5,a2+a4=10.
(1)求数列{an}的通项公式.
(2)若bn=1+log4an,求数列{
}的前n项和.
(1)求数列{an}的通项公式.
(2)若bn=1+log4an,求数列{
| 1 |
| bnbn+1 |
(1)设等比数列{an}的公比为q,
由题意得,
,解得a1=1,q=2,
∴an=2n-1,
(2)由(1)得,bn=1+log4an=1+
=
,
∴
=
=4(
-
),
设数列{
}的前n项和为Tn,
∴Tn=4[(
-
)+(
-
)+(
-
)+…+(
-
)]
=4(
-
)=
.
由题意得,
|
∴an=2n-1,
(2)由(1)得,bn=1+log4an=1+
| log | 2n-14 |
| n+1 |
| 2 |
∴
| 1 |
| bnbn+1 |
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
设数列{
| 1 |
| bnbn+1 |
∴Tn=4[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=4(
| 1 |
| 2 |
| 1 |
| n+2 |
| 2n |
| n+2 |
练习册系列答案
相关题目