题目内容

18.已知抛物线y2=2px(p>0)上的一点M(1,m)到其焦点的距离为5,则实数p=8.

分析 通过点M(1,m)到其焦点的距离为5,利用抛物线的定义,求解即可.

解答 解:∵抛物线方程为y2=2px,
∴抛物线焦点为F($\frac{p}{2}$,0),准线方程为x=-$\frac{p}{2}$,又∵点M(1,m)到其焦点的距离为5,
∴p>0,根据抛物线的定义,得1+$\frac{p}{2}$=5,
∴p=8.
故答案为:8.

点评 本题给出一个特殊的抛物线,在已知其上一点到焦点距离的情况下,求准线方程.着重考查了抛物线的定义和标准方程,以及抛物线的基本概念,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网