题目内容
已知数列{an}是等差数列,且a2=7,a5=16,数列{bn}是各项为正数的数列,且b1=2,点(log2bn,log2bn+1)在直线y=x+1上.(1)求{an}、{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项的和Sn.
分析:(1)由题设知
,所以an=3n+1,再由点(log2bn,log2bn+1)在直线y=x+1上,知log2bn+1=log2bn+1,所以log2
=1,由此能导出bn.
(2)由cn=anbn得cn=(3n+1)2n,Sn=4×2+7×22+…+(3n+1)2n,然后由错位相减法能求出Sn=4+(3n-2)2n+1.
|
| bn+1 |
| bn |
(2)由cn=anbn得cn=(3n+1)2n,Sn=4×2+7×22+…+(3n+1)2n,然后由错位相减法能求出Sn=4+(3n-2)2n+1.
解答:解:(1)∵数列{an}是等差数列,且a2=7,a5=16,
∴
,∴a1=4,d=3,∴an=3n+1(3分)
又点(log2bn,log2bn+1)在直线y=x+1上,∴log2bn+1=log2bn+1,
∴log2bn+1-log2bn=1,log2
=1,bn+1=2bn,又b1=2,∴bn=2n(6分)
(2)由cn=anbn得cn=(3n+1)2n(7分)
∴Sn=4×2+7×22++(3n+1)2n①
2Sn=4×22+7×23++(3n+1)2n+1②
①-②得-Sn=4×2+3×22++3×2n-(3n+1)2n+1(11分)
∴-Sn=8+3×22(2n-1-1)-(3n+1)2n+1=-4-(3n-2)2n+1
∴Sn=4+(3n-2)2n+1(13分)
∴
|
又点(log2bn,log2bn+1)在直线y=x+1上,∴log2bn+1=log2bn+1,
∴log2bn+1-log2bn=1,log2
| bn+1 |
| bn |
(2)由cn=anbn得cn=(3n+1)2n(7分)
∴Sn=4×2+7×22++(3n+1)2n①
2Sn=4×22+7×23++(3n+1)2n+1②
①-②得-Sn=4×2+3×22++3×2n-(3n+1)2n+1(11分)
∴-Sn=8+3×22(2n-1-1)-(3n+1)2n+1=-4-(3n-2)2n+1
∴Sn=4+(3n-2)2n+1(13分)
点评:本题考查数列的性质和应用,解题时要注意通项公式的求法和错位相减求和法的合理运用.
练习册系列答案
相关题目