题目内容

在三棱锥O-ABC中,三条棱OA,OB,OC两两互相垂直,且OA=OB=OC,M是AB边的中点,则OM与平面ABC所成角的正切值是(  )
分析:利用线面、面面垂直的判定和性质定理、等腰三角形的性质、线面角的定义即可得出.
解答:解:如图所示:
∵三条棱OA,OB,OC两两互相垂直,且OA=OB=OC,∴AC=BC,OC⊥平面OAB.
又M是AB边的中点,∴OM⊥AB,CM⊥AB.
又OM∩CM=M,AB⊥平面OCM,
∵AB?平面ABC,∴平面OCM⊥平面ABC.
可知:OM在两个平面的交线CM上.
∴∠OMC即为OM与平面ABC所成角.
不妨设OM=1,则OA=OC=
2

在Rt△OCM中,tan∠OMC=
OC
OM
=
2

故选B.
点评:熟练掌握线面、面面垂直的判定和性质定理、等腰三角形的性质、线面角的定义是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网