题目内容

定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=________.

6
分析:本题是抽象函数及其应用类问题.在解答时,首先要分析条件当中的特殊函数值,然后结合条件所给的抽象表达式充分利用特值得思想进行分析转化,例如结合表达式的特点1=0+1等,进而问题即可获得解答.
解答:由题意可知:
f(1)=f(0+1)=f(0)+f(1)+2×0×1
=f(0)+f(1),
∴f(0)=0.
f(0)=f(-1+1)=f(-1)+f(1)+2×(-1)×1
=f(-1)+f(1)-2,
∴f(-1)=0.
f(-1)=f(-2+1)=f(-2)+f(1)+2×(-2)×1
=f(-2)+f(1)-4,
∴f(-2)=2.
f(-2)=f(-3+1)=f(-3)+f(1)+2×(-3)×1
=f(-3)+f(1)-6,
∴f(-3)=6.
故答案为:6.
点评:本题是抽象函数及其应用类问题.在解答的过程当中充分体现了抽象性、特值的思想以及问题转化的能力.值得同学们体会和反思.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网