题目内容

如图,已知矩形ABCD,PA⊥平面ABCD,M、N分别是AB、PC的中点,∠PDA为θ,能否确定θ,使直线MN是直线AB与PC的公垂线?若能确定,求出θ的值;若不能确定,说明理由.

解:以点A为原点建立空间直角坐标系A—xyz,如图,设|AD|=2a,|AB|=2b,∠PDA=θ,则A(0,0,0)、B(0,2b,0)、C(2a、2b、0)、D(2a,0,0)、P(0,0,2atanθ)、M(0,b,0)、N(a,b,atanθ).?

=(0,2b,0),=(2a,2b,-2atanθ),=(a,0,atanθ).?

·=(0,2b,0)·(a,0,atanθ)=0,?

.即AB⊥MN.?

若NM⊥PC,?

=(a,0,atanθ)(2a,2b,-2atanθ)=2a2-2a2tan2θ=0.

∴tan2θ=1,而θ是锐角.

∴tanθ=1,θ=45°.?

即当θ=45°时,直线MN是直线AB与PC的公垂线.

点评:对于开放型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,这是一种最常用也最基本的方法.

练习册系列答案
相关题目

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网