题目内容

已知函数f(x)=log2(x2-ax-a)在区间(-∞,1-]上是单调递减函数.求实数a的取值范围.

a的取值范围是{a|2-2≤a<2}

令g(x)=x2-ax-a,则g(x)=(x-2-a-,
由以上知g(x)的图象关于直线x=对称且此抛物线开口向上.
因为函数f(x)=log2g(x)的底数2>1,
在区间(-∞,1-]上是减函数,
所以g(x)=x2-ax-a在区间(-∞,1-]上也是单调减函数,且g(x)>0.

解得2-2≤a<2.
故a的取值范围是{a|2-2≤a<2}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网