题目内容
若数列{an}通项公式为an=
,则数列{an}的前5项和为
.
| 1 |
| n(n+1) |
| 5 |
| 6 |
| 5 |
| 6 |
分析:利用裂项法可得an=
-
,从而可求a1+a2+…+a5.
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵an=
=
-
,
∴a1+a2+…+a5
=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案为:
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴a1+a2+…+a5
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 6 |
=1-
| 1 |
| 6 |
=
| 5 |
| 6 |
故答案为:
| 5 |
| 6 |
点评:本题考查数列的求和,突出考查裂项法的应用,属于中档题.
练习册系列答案
相关题目