题目内容
已知函数f(x)=
,则f(x)-f(-x)>-1的解集为
- A.(-∞,-1)∪(1,+∞)
- B.[-1,-
)∪(0,1] - C.(-∞,0)∪(1,+∞)
- D.[-1,-
]∪(0,1)
B
分析:已知f(x)为分段函数,要求f(x)-f(-x)>-1的解集,就必须对其进行讨论:①若-1≤x<0时;②若x=0,③若0<x≤1,进行求解;
解答:∵f(x)=
,
∴①若-1≤x<0时,也即0<-x≤1,
∴f(x)-f(-x)=-x-1-(x+1)>-1,解得x<-
,
∴-1<x<-
②若x=0,则f(0)=-1,∴f(x)-f(-x)=-1,故x≠0;
③若0<x≤1,则-1≤-x<0,∴-x+1-(x-1)>-1,
x
,
∴0<x≤1;
综上①②得不等式解集为:[-1,-
)∪(0,1];
故选B;
点评:此题考查分段函数的性质,以及分类讨论思想的应用,这都是中学阶段的重点内容,我们要熟练掌握,知道如何找分类讨论的界点;
分析:已知f(x)为分段函数,要求f(x)-f(-x)>-1的解集,就必须对其进行讨论:①若-1≤x<0时;②若x=0,③若0<x≤1,进行求解;
解答:∵f(x)=
∴①若-1≤x<0时,也即0<-x≤1,
∴f(x)-f(-x)=-x-1-(x+1)>-1,解得x<-
∴-1<x<-
②若x=0,则f(0)=-1,∴f(x)-f(-x)=-1,故x≠0;
③若0<x≤1,则-1≤-x<0,∴-x+1-(x-1)>-1,
x
∴0<x≤1;
综上①②得不等式解集为:[-1,-
故选B;
点评:此题考查分段函数的性质,以及分类讨论思想的应用,这都是中学阶段的重点内容,我们要熟练掌握,知道如何找分类讨论的界点;
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|