题目内容
(本小题满分12分)一动圆与已知
:
相外切,与
:
相内切.
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若A(0,
1),轨迹C与直线y=kx+m (k≠0)相交于不同的两点M、N,当|
|=|
|时,求m的取值范围.
【解析】(Ⅰ)设动圆圆心为M(x , y),半径为R,则由题设条件,可知:
|MO1|=1+R ,|MO2|=(2
)
R, ∴|MO1|+|MO2|=2
.
由椭圆定义知:M在以O1 ,O2为焦点的椭圆上,且
,
,
,故动圆圆心的轨迹方程为
.…………………4分
(Ⅱ)设P为MN的中点,联立方程组
,
(3k2+1)x2+6mkx+3(m2
1)=0.
=
12m2+36k2+12>0
m2<3k2+1 …………………… (1) ………………6分
又![]()
由
⊥
…………(2) ……………9分
.故
.…………12分
练习册系列答案
相关题目