题目内容
机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利(盈利额为正值);
(3)使用若干年后,对机床的处理方案有两种:
(Ⅰ)当年平均盈利额达到最大值时,以30万元价格处理该机床;
(Ⅱ)当盈利额达到最大值时,以12万元价格处理该机床.
请你研究一下哪种方案处理较为合理?请说明理由解析: (1)依题得:
(x
N*)
(2)解不等式![]()
∵x
N*,∴3≤x≤17,故从第3年开始盈利。
(3)(Ⅰ)![]()
当且仅当
时,即x=7时等号成立.
到2008年,年平均盈利额达到最大值,工厂共获利12×7+30=114万元.
(Ⅱ)y=-2x2+40x-98=-(x-10)2+102,当x=10时,ymax=102
故到2011年,盈利额达到最大值,工厂获利102+12=114万元
盈利额达到的最大值相同,而方案Ⅰ所用的时间较短,故方案Ⅰ比较合理.
练习册系列答案
相关题目