题目内容
已知函数f(x)=
| ||
5x+
|
(Ⅰ)求f(1)+f(0)和f(x)+f(1-x)的值;
(Ⅱ)若数列{an}的通项公式为an=f(
| n |
| m |
(Ⅲ)设数列{bn}满足:b1=
| 1 |
| 2 |
| 1 |
| b1+1 |
| 1 |
| b2+1 |
| 1 |
| bn+1 |
| 5 |
分析:(Ⅰ)由函数值的求法令x=1,x=0直接求解f(1)+f(0);先求得f(1-x)再求解f(x)+f(1-x).
(Ⅱ)根据(Ⅰ)的结论f(
)+f(1-
)=1(1≤k≤m-1),
即f(
)+f(
)=1,从而有ak+am-k=1,然后由倒序相加法求解.
(Ⅲ)将bn+1=bn2+bn=bn(bn+1),取倒数转化为:
=
=
-
,从而有
=
-
.
然后用错位相消法求得Tn=(
-
)+(
-
)++(
-
)=
-
=2-
.
再由sm构造4Sm<777Tn+
恒成立,用最值法求解.
(Ⅱ)根据(Ⅰ)的结论f(
| k |
| m |
| k |
| m |
即f(
| k |
| m |
| m-k |
| m |
(Ⅲ)将bn+1=bn2+bn=bn(bn+1),取倒数转化为:
| 1 |
| bn+1 |
| 1 |
| bn(bn+1) |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| bn+1 |
然后用错位相消法求得Tn=(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| bn+1 |
| 1 |
| bn+1 |
再由sm构造4Sm<777Tn+
| 5 |
解答:解:(Ⅰ)f(1)+f(0)=
+
=1;
f(x)+f(1-x)=
+
=
+
=1;(4分)
(Ⅱ)由(Ⅰ)得f(
)+f(1-
)=1(1≤k≤m-1),即f(
)+f(
)=1,∴ak+am-k=1,
由Sm=a1+a2+a3++am-1+am,①
得Sm=am-1+am-2+am-3++a1+am,②
由①+②,得2Sm=(m-1)×1+2am,
∴Sm=(m-1)×
+f(1)=(m-1)×
+
,(10分)
(Ⅲ)∵b1=
,bn+1=bn2+bn=bn(bn+1),∴对任意的n∈N*,bn>0.
∴
=
=
-
,即
=
-
.
∴Tn=(
-
)+(
-
)++(
-
)=
-
=2-
.
∵bn+1-bn=bn2>0,∴bn+1>bn,∴数列{bn}是单调递增数列.
∴Tn关于n递增.当n≥3,且n∈N+时,Tn≥T3.
∵b1=
,b2=
(
+1)=
,b3=
(
+1)=
,b4=
(
+1)=
∴Tn≥T3=2-
=2-
.
∴4Sm<777T3+
,∴m<650.5.而m为正整数,
∴m的最大值为650.(14分)
| ||
5+
|
| ||
1+
|
f(x)+f(1-x)=
| ||
5x+
|
| ||
51-x+
|
| ||
5x+
|
| ||
5+
|
(Ⅱ)由(Ⅰ)得f(
| k |
| m |
| k |
| m |
| k |
| m |
| m-k |
| m |
由Sm=a1+a2+a3++am-1+am,①
得Sm=am-1+am-2+am-3++a1+am,②
由①+②,得2Sm=(m-1)×1+2am,
∴Sm=(m-1)×
| 1 |
| 2 |
| 1 |
| 2 |
5-
| ||
| 4 |
(Ⅲ)∵b1=
| 1 |
| 2 |
∴
| 1 |
| bn+1 |
| 1 |
| bn(bn+1) |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| bn+1 |
∴Tn=(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| bn+1 |
| 1 |
| bn+1 |
∵bn+1-bn=bn2>0,∴bn+1>bn,∴数列{bn}是单调递增数列.
∴Tn关于n递增.当n≥3,且n∈N+时,Tn≥T3.
∵b1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 21 |
| 16 |
| 21 |
| 16 |
| 21 |
| 16 |
| 777 |
| 256 |
∴Tn≥T3=2-
| 1 |
| b4 |
| 256 |
| 777 |
∴4Sm<777T3+
| 5 |
∴m的最大值为650.(14分)
点评:本题主要考查数列与函数的综合运用,主要涉及了函数求值及规律,数列的通项,前n项和及倒序相加法,裂项相消法求和等问题,属于难题.
练习册系列答案
相关题目