题目内容

(理科)三个数a、b、c∈(0,
π
2
),且cosa=a,sin(cosb)=b,cos(sinc)=c,则a、b、c从小到大的顺序是______.
先证明当x∈(0,
π
2
)时,sinx<x
设y=sinx-x,则y′=cosx-1<0,∴y=sinx-x为(0,
π
2
)上的减函数,∴y<sino-0=0,即sinx<x
同理可证明f(x)=sin(cosx)-x为(0,
π
2
)上的减函数,g(x)=cos(sinx)-x为(0,
π
2
)上的减函数
∵sina<a
∴cos(sina)-a=cos(sina)-cosa>0,而cos(sinc)-c=0,
∴g(a)>g(c),a、c∈(0,
π
2
),
∴a<c
同理∵x∈(0,
π
2
)时,sinx<x,∴sin(cosa)<cosa
∴sin(cosa)-a=sin(cosa)-cosa<0,而sin(cosb)-b=0
∴f(a)<f(b),a、b∈(0,
π
2
),
∴a>b
综上所述,b<a<c
故答案为b<a<c
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网