题目内容
已知数列{an}和{bn}满足a1=b1,且对任意n∈N*都有an+bn=1,| an+1 |
| an |
| bn | ||
1-
|
(1)判断数列{
| 1 |
| an |
(2)证明:(1+an)n+1•bnn>1.
分析:(1)根据
=
,把an+bn=1代入整理得
=
+1,进而根据等差数列的定义判断出数列{
}为等差数列.
(2)根据an+bn=1,a1=
求得a1和b1.进而根据(1)中
求得an,进而求得bn,进而可知要证不等式(1+an)n+1•bnn>1,即(1+
)n+1•(
)n>1,令f(x)=
(x>1),对函数f(x)进行求导,再令g(x)=
-lnx,对函数g(x)进行求导,进而利用导函数判断f(x)和g(x)的单调性,进而利用函数的单调性证明原式.
| an+1 |
| an |
| bn | ||
1-
|
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(2)根据an+bn=1,a1=
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| n+1 |
| n |
| n+1 |
| lnx |
| x-1 |
| x-1 |
| x |
解答:(1)解:数列{
}为等差数列.
理由如下:
∵对任意n∈N*都有an+bn=1,
=
,
∴
=
=
=
.
∴
=
+1,即
-
=1.
∴数列{
}是首项为
,公差为1的等差数列.
(2)证明:∵an+bn=1,a1=
∴a1=b1=
.
由(1)知
=2+(n-1)=n+1.
∴an=
,bn=1-an=
.
所证不等式(1+an)n+1•bnn>1,即(1+
)n+1•(
)n>1,
也即证明(1+
)n+1>(1+
)n.
令f(x)=
(x>1),
则f′(x)=
.
再令g(x)=
-lnx,
则g′(x)=
-
=
.
当x>1时,g′(x)<0,
∴函数g(x)在[1,+∞)上单调递减.
∴当x>1时,g(x)<g(1)=0,即
-lnx<0.
∴当x>1时,f′(x)=
<0.
∴函数f(x)=
在(1,+∞)上单调递减.
∵1<1+
<1+
,
∴f(1+
)>f(1+
).
∴
>
.
∴ln(1+
)n+1>ln(1+
)n.
∴(1+
)n+1>(1+
)n.
∴(1+an)n+1•bnn>1成立.
| 1 |
| an |
理由如下:
∵对任意n∈N*都有an+bn=1,
| an+1 |
| an |
| bn | ||
1-
|
∴
| an+1 |
| an |
| bn | ||
1-
|
| 1-an | ||
1-
|
| 1 |
| 1+an |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
(2)证明:∵an+bn=1,a1=
| 1 |
| 2 |
∴a1=b1=
| 1 |
| 2 |
由(1)知
| 1 |
| an |
∴an=
| 1 |
| n+1 |
| n |
| n+1 |
所证不等式(1+an)n+1•bnn>1,即(1+
| 1 |
| n+1 |
| n |
| n+1 |
也即证明(1+
| 1 |
| n+1 |
| 1 |
| n |
令f(x)=
| lnx |
| x-1 |
则f′(x)=
| ||
| (x-1)2 |
再令g(x)=
| x-1 |
| x |
则g′(x)=
| 1 |
| x2 |
| 1 |
| x |
| 1-x |
| x2 |
当x>1时,g′(x)<0,
∴函数g(x)在[1,+∞)上单调递减.
∴当x>1时,g(x)<g(1)=0,即
| x-1 |
| x |
∴当x>1时,f′(x)=
| ||
| (x-1)2 |
∴函数f(x)=
| lnx |
| x-1 |
∵1<1+
| 1 |
| n+1 |
| 1 |
| n |
∴f(1+
| 1 |
| n+1 |
| 1 |
| n |
∴
ln(1+
| ||
1+
|
ln(1+
| ||
1+
|
∴ln(1+
| 1 |
| n+1 |
| 1 |
| n |
∴(1+
| 1 |
| n+1 |
| 1 |
| n |
∴(1+an)n+1•bnn>1成立.
点评:本小题主要考查导数及其应用、数列、不等式等知识,考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识
练习册系列答案
相关题目