题目内容
函数f(x)=x2+bx在点A(1,f(1))处的切线方程为3x-y-1=0,设数列{
}的前n项和为Sn,则S2012为______.
| 1 |
| f(n) |
∵f(x)=x2+bx
∴f′(x)=2x+b
∴y=f(x)的图象在点A(1,f(1))处的切线斜率k=f′(1)=2+b
∵切线与直线3x-y+2=0平行
∴b+2=3
∴b=1,f(x)=x2+x
∴f(n)=n2+n=n(n+1)
∴
=
=
-
∴S2012=
+
+…+
=1-
+
-
+
+…+
-
=1-
=
故答案为
∴f′(x)=2x+b
∴y=f(x)的图象在点A(1,f(1))处的切线斜率k=f′(1)=2+b
∵切线与直线3x-y+2=0平行
∴b+2=3
∴b=1,f(x)=x2+x
∴f(n)=n2+n=n(n+1)
∴
| 1 |
| f(n) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴S2012=
| 1 |
| f(1) |
| 1 |
| f(2) |
| 1 |
| f(2012) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2012 |
| 1 |
| 2013 |
| 1 |
| 2013 |
| 2012 |
| 2013 |
故答案为
| 2012 |
| 2013 |
练习册系列答案
相关题目