题目内容
(2010•合肥模拟)在边长为3的正三角形ABC中,点M、N分别满足
=-2
,2
=
,则|
+
|=( )
| AM |
| BM |
| BN |
| NC |
| CM |
| AN |
分析:先根据条件得到M,N分别为AB,BC的三分点;再把
+
转化为
+
,放到根号内即可计算其模长.
| AN |
| CM |
| 2 |
| 3 |
| AB |
| 2 |
| 3 |
| CB |
解答:
解:由题得:M,N分别为AB,BC的三分点,
且
+
=
+
+
+
=
+
+
+
=
+
.
∴|
+
|=|
+
|
=
=
=
=
×
=2
.
故选D.
且
| AN |
| CM |
| AB |
| BN |
| CB |
| BM |
=
| AB |
| 1 |
| 3 |
| BC |
| CB |
| 1 |
| 3 |
| BA |
=
| 2 |
| 3 |
| AB |
| 2 |
| 3 |
| CB |
∴|
| AN |
| CM |
| 2 |
| 3 |
| AB |
| 2 |
| 3 |
| CB |
=
| 2 |
| 3 |
(
|
| 2 |
| 3 |
|
=
| 2 |
| 3 |
| 32+2×3×3×cos600+32 |
=
| 2 |
| 3 |
| 27 |
| 3 |
故选D.
点评:若未知向量的坐标,只是已知条件中有向量的模及夹角,则求向量的模时,主要是根据向量数量的数量积计算公式,求出向量模的平方,即向量的平方,再开方求解.
练习册系列答案
相关题目