题目内容

(2012•门头沟区一模)已知等差数列{an}中,a2+a4=10,a5=9,数列{bn}中,b1=a1,bn+1=bn+an
( I)求数列{an}的通项公式,写出它的前n项和Sn
( II)求数列{bn}的通项公式;
( III)若cn=
2anan+1
,求数列{cn}的前n项和Tn
分析:( I)由等差数列的通项公式,结合条件求出首项和公差,可得数列{an}的通项公式及它的前n项和Sn
( II)由b1=a1,bn+1=bn+an,求出数列{bn}的通项公式.
( III)化简cn=
2
anan+1
=
1
2n-1
-
1
2n+1
,由此利用裂项法对数列{cn}求其前n项和.
解答:解:( I)设an=a1+(n-1)d,由题意得2a1+4d=10,a1+4d=9,a1=1,d=2,
所以an=2n-1,Sn=na1+
n(n-1)
2
d=n2
.…(4分)
( II)b1=a1=1,bn+1=bn+an=bn+2n-1,
所以b2=b1+1,b3=b2+3=b1+1+3,…
bn=b1+1+2+…+(2n-3)=1+(n-1)2=n2-2n+2(n≥2),
又n=1时n2-2n+2=1=a1
所以数列{bn}的通项bn=n2-2n+2;…(9分)
( III)cn=
2
anan+1
=
2
(2n-1)(2n+1)
=
1
2n-1
-
1
2n+1

Tn=c1+c2+…+cn=(
1
1
-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)

=1-
1
2n+1
=
2n
2n+1
. …(14分)
点评:本题主要考查等差数列的定义和性质,等差数列的通项公式,等差数列前n项和公式的应用,用裂项法进行数列求和,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网