题目内容
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=
(n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)记cn=an•bn,求数列{cn}的前n项和Tn.
| 1-bn |
| 2 |
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)记cn=an•bn,求数列{cn}的前n项和Tn.
(Ⅰ)∵a3,a5是方程x2-14x+45=0的两根,且数列{an}的公差d>0,
∴a3=5,a5=9,公差d=
=2.
∴an=a5+(n-5)d=2n-1.(3分)
又当n=1时,有b1=S1=
∴b1=
当n≥2时,有bn=Sn-Sn-1=
(bn-1-bn),∴
=
(n≥2).
∴数列{bn}是首项b1=
,公比q=
等比数列,
∴bn=b1qn-1=
.(6分)
(Ⅱ)由(Ⅰ)知cn=anbn=
,则Tn=
+
+
++
(1)
∴
Tn=
+
+
++
+
(2)(10分)
(1)-(2)得:
Tn=
+
+
++
-
=
+2(
+
++
)-
化简得:Tn=1-
(12分)
∴a3=5,a5=9,公差d=
| a5-a3 |
| 5-3 |
∴an=a5+(n-5)d=2n-1.(3分)
又当n=1时,有b1=S1=
| 1-b1 |
| 2 |
∴b1=
| 1 |
| 3 |
当n≥2时,有bn=Sn-Sn-1=
| 1 |
| 2 |
| bn |
| bn-1 |
| 1 |
| 3 |
∴数列{bn}是首项b1=
| 1 |
| 3 |
| 1 |
| 3 |
∴bn=b1qn-1=
| 1 |
| 3n |
(Ⅱ)由(Ⅰ)知cn=anbn=
| 2n-1 |
| 3n |
| 1 |
| 31 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-1 |
| 3n |
∴
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| 5 |
| 34 |
| 2n-3 |
| 3n |
| 2n-1 |
| 3n+1 |
(1)-(2)得:
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 32 |
| 2 |
| 33 |
| 2 |
| 3n |
| 2n-1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
化简得:Tn=1-
| n+1 |
| 3n |
练习册系列答案
相关题目