题目内容

【题目】已知A是椭圆E: =1的左顶点,斜率为k(k>0)的直线交E与A,M两点,点N在E上,MA⊥NA.
(1)当|AM|=|AN|时,求△AMN的面积
(2)当2|AM|=|AN|时,证明: <k<2.

【答案】
(1)

由椭圆E的方程: =1知,其左顶点A(﹣2,0),

∵|AM|=|AN|,且MA⊥NA,∴△AMN为等腰直角三角形,

∴MN⊥x轴,设M的纵坐标为a,则M(a﹣2,a),

∵点M在E上,∴3(a﹣2)2+4a2=12,整理得:7a2﹣12a=0,∴a= 或a=0(舍),

∴SAMN= a×2a=a2=


(2)

设直线lAM的方程为:y=k(x+2),直线lAN的方程为:y=﹣ (x+2),由 消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴xM﹣2=﹣ ,∴xM=2﹣ =

∴|AM|= |xM﹣(﹣2)|= =

∵k>0,

∴|AN|= =

又∵2|AM|=|AN|,∴ =

整理得:4k3﹣6k2+3k﹣8=0,

设f(k)=4k3﹣6k2+3k﹣8,

则f′(k)=12k2﹣12k+3=3(2k﹣1)2≥0,

∴f(k)=4k3﹣6k2+3k﹣8为(0,+∞)的增函数,

又f( )=4×3 ﹣6×3+3 ﹣8=15 ﹣26= <0,f(2)=4×8﹣6×4+3×2﹣8=6>0,

<k<2.


【解析】(1)依题意知椭圆E的左顶点A(﹣2,0),由|AM|=|AN|,且MA⊥NA,可知△AMN为等腰直角三角形,设M(a﹣2,a),利用点M在E上,可得3(a﹣2)2+4a2=12,解得:a= ,从而可求△AMN的面积;(II)设直线lAM的方程为:y=k(x+2),直线lAN的方程为:y=﹣ (x+2),联立 消去y,得(3+4k2)x2+16k2x+16k2﹣12=0,利用韦达定理及弦长公式可分别求得|AM|= |xM﹣(﹣2)|= ,|AN|= = , 结合2|AM|=|AN|,可得 = ,整理后,构造函数f(k)=4k3﹣6k2+3k﹣8,利用导数法可判断其单调性,再结合零点存在定理即可证得结论成立.;本题考查直线与圆锥曲线的综合问题,常用的方法就是联立方程求出交点的横坐标或者纵坐标的关系,通过这两个关系的变形去求解,考查构造函数思想与导数法判断函数单调性,再结合零点存在定理确定参数范围,是难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网