题目内容
已知数列{an}满足an=an-1+
a2n-1(n∈N*).
(1)若数列{an}是以常数a1首项,公差也为a1的等差数列,求a1的值;
(2)若a0=
,求证:
-
<
对任意n∈N*都成立;
(3)若a0=
,求证:
<an<n对任意n∈N*都成立.
| 1 |
| n2 |
(1)若数列{an}是以常数a1首项,公差也为a1的等差数列,求a1的值;
(2)若a0=
| 1 |
| 2 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| n2 |
(3)若a0=
| 1 |
| 2 |
| n+1 |
| n+2 |
分析:(1)由an=an-1+
a2n-1(n∈N*)得:a1=
[a1+(n-2)a1]2,从而可求的求得a1=0;
(2)由an>an-1>0知an<an-1+
anan-1,两边同除以anan-1,可得结论
(3)由(2)可知
-
=(
-
)+(
-
)+…+(
-
)<1+
+
+…+
,再进行放缩
可证得结论.
| 1 |
| n2 |
| 1 |
| n2 |
(2)由an>an-1>0知an<an-1+
| 1 |
| n2 |
(3)由(2)可知
| 1 |
| a0 |
| 1 |
| an |
| 1 |
| a0 |
| 1 |
| a1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
可证得结论.
解答:解:(1)由an=an-1+
a2n-1(n∈N*)得:a1=
[a1+(n-2)a1]2
即a1=(
)2a12,求得a1=0…5分
(2)由an>an-1>0知an<an-1+
anan-1,
两边同除以anan-1,得
-
<
…10分
(3)
-
=(
-
)+(
-
)+…+(
-
)<1+
+
+…+
<1+
+
+…+
=1+(
-
)+(
-
)+(
-
)+…+(
-
)=2-
,将a0=
代入,得an<n;㈠…12分∵an-1<n-1∴an=an-1+
a2n-1<an-1+
an-1an-1>
anan>an-1+
an-1•
an
-
>
>
-
-
=(
-
)+(
-
)+…+(
-
)>(
-
)+(
-
)+…+(
-
)=
-
而a1=
,∴
<
+
<
∴an>
㈡
由㈠㈡知,命题成立.…14分.
| 1 |
| n2 |
| 1 |
| n2 |
即a1=(
| n-1 |
| n2 |
(2)由an>an-1>0知an<an-1+
| 1 |
| n2 |
两边同除以anan-1,得
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| n2 |
(3)
| 1 |
| a0 |
| 1 |
| an |
| 1 |
| a0 |
| 1 |
| a1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| (n-1) |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n2 |
| n-1 |
| n2 |
| n2 |
| n2+n-1 |
| 1 |
| n2 |
| n2 |
| n2+n-1 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| n2+n-1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| a1 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 3 |
| 4 |
| 1 |
| an |
| 5 |
| 6 |
| 1 |
| n+1 |
| n+2 |
| n+1 |
| n+1 |
| n+2 |
由㈠㈡知,命题成立.…14分.
点评:本题以数列为载体,考查数列递推式,考查数列与不等式的结合,考查放缩法,难度较大.
练习册系列答案
相关题目