题目内容
已知函数f(x)=
(x>0,a为常数),数列 {an} 满足:a1=
,an+1=f(an),n∈N*.
(1)当a=1时,求数列{an} 的通项公式;
(2)在(1)的条件下,证明对?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
.
| ax |
| 1+xa |
| 1 |
| 2 |
(1)当a=1时,求数列{an} 的通项公式;
(2)在(1)的条件下,证明对?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
| n(n+5) |
| 12(n+2)(n+3) |
分析:(1)a=1时f(x)=
,有an+1=f(an),得an+1=
,两边取倒数可得
-
=1,从而可判断数列{
}是以1为首项,1为公差的等差数列,进而可求得
,an;
(2)由(1)表示出anan+1an+2,拆项后利用裂项相消法可求得结果;
| x |
| 1+x |
| an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an |
(2)由(1)表示出anan+1an+2,拆项后利用裂项相消法可求得结果;
解答:解:(1)当a=1时,函数f(x)=
,
∵an+1=f(an),∴an+1=
,
两边取倒数并移项,得
-
=1,
又∵a1=
,∴数列{
}是以2为首项,1为公差的等差数列.
∴
=2+(n-1)×1=n+1,∴an=
;
(2)由(1)知,an=
,
则anan+1an+2=
=
[
-
],
∴a1a2a3+a2a3a4+…+anan+1an+2=
(
-
)+
(
-
)+…+
[
-
]
=
[
-
]=
×
=
.
| x |
| 1+x |
∵an+1=f(an),∴an+1=
| an |
| an+1 |
两边取倒数并移项,得
| 1 |
| an+1 |
| 1 |
| an |
又∵a1=
| 1 |
| 2 |
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| n+1 |
(2)由(1)知,an=
| 1 |
| n+1 |
则anan+1an+2=
| 1 |
| (n+1)(n+2)(n+3) |
| 1 |
| 2 |
| 1 |
| (n+1)(n+2) |
| 1 |
| (n+2)(n+3) |
∴a1a2a3+a2a3a4+…+anan+1an+2=
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 2 |
| 1 |
| (n+1)(n+2) |
| 1 |
| (n+2)(n+3) |
=
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| (n+2)(n+3) |
| 1 |
| 2 |
| (n+2)(n+3)-6 |
| 6(n+2)(n+3) |
| n(n+5) |
| 12(n+2)(n+3) |
点评:本题考查由数列递推式求数列通项、数列求和,属中档题,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目