题目内容

已知函数f(x)=
ax
1+xa
(x>0,a为常数),数列 {an} 满足:a1=
1
2
,an+1=f(an),n∈N*
(1)当a=1时,求数列{an} 的通项公式;
(2)在(1)的条件下,证明对?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
n(n+5)
12(n+2)(n+3)
分析:(1)a=1时f(x)=
x
1+x
,有an+1=f(an),得an+1=
an
an+1
,两边取倒数可得
1
an+1
-
1
an
=1
,从而可判断数列{
1
an
 }是以1为首项,1为公差的等差数列,进而可求得
1
an
an

(2)由(1)表示出anan+1an+2,拆项后利用裂项相消法可求得结果;
解答:解:(1)当a=1时,函数f(x)=
x
1+x

∵an+1=f(an),∴an+1=
an
an+1

两边取倒数并移项,得
1
an+1
-
1
an
=1

又∵a1=
1
2
,∴数列{
1
an
 }是以2为首项,1为公差的等差数列.   
1
an
=2+(n-1)×1=n+1,∴an=
1
n+1

(2)由(1)知,an=
1
n+1

则anan+1an+2=
1
(n+1)(n+2)(n+3)
=
1
2
[
1
(n+1)(n+2)
-
1
(n+2)(n+3)
]

∴a1a2a3+a2a3a4+…+anan+1an+2=
1
2
1
2×3
-
1
3×4
)+
1
2
1
3×4
-
1
4×5
)+…+
1
2
[
1
(n+1)(n+2)
-
1
(n+2)(n+3)
]

=
1
2
[
1
6
-
1
(n+2)(n+3)
]=
1
2
×
(n+2)(n+3)-6
6(n+2)(n+3)
=
n(n+5)
12(n+2)(n+3)
点评:本题考查由数列递推式求数列通项、数列求和,属中档题,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网