题目内容
已知定义在R+上的函数f(x)有2f(x)+f(
)=2x+
+3.
(1)求函数f(x)的解析式;
(2)设函数g(x)=
(x>0),直线y=
n-x(n∈N*)分别与函数y=g(x),y=g-1(x)交于An、Bn两点(n∈N*).设an=|AnBn|,Sn为数列{an}的前n项和.
①求an,并证明
=
-
+
(n≥2);
②求证:当n≥2时,Sn2>2(
+
+…+
).
| 1 |
| x |
| 1 |
| x |
(1)求函数f(x)的解析式;
(2)设函数g(x)=
| f2(x)-2x |
| 2 |
①求an,并证明
| S | 2n-1 |
| S | 2n |
| 2Sn |
| n |
| 1 |
| n2 |
②求证:当n≥2时,Sn2>2(
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
(1)2f(x)+f(
)=2x+
+3
故2f(
)+f(x)=
+x+3,
两式联立可得f(x)=x+1.
(2)由(1)可得g(x)=
=
,
联立
,
得交点An(
,
),由此得Bn(
,
),
所以an=|AnBn|=
=
,
∵Sn-
=Sn-1
∴
=
-
+
,
∴当n≥2时,
-
=
-
,
-
=
-
,…
-
=
-
,
累加得:
=2(
+
+…+
)+1-(
+
+…+
)
又∵1-(
+
+…+
)>1-[
+
+…+
]
=1-(1-
+
-
+…+
-
)=
>0
∴Sn2>2(
+
+…+
)
| 1 |
| x |
| 1 |
| x |
故2f(
| 1 |
| x |
| 2 |
| x |
两式联立可得f(x)=x+1.
(2)由(1)可得g(x)=
| (x+1)2-2x |
| x2+1 |
联立
|
得交点An(
| 2n2-1 | ||
2
|
| 2n2+1 | ||
2
|
| 2n2+1 | ||
2
|
| 2n2-1 | ||
2
|
所以an=|AnBn|=
(
|
| 1 |
| n |
∵Sn-
| 1 |
| n |
∴
| S | 2n-1 |
| S | 2n |
| 2Sn |
| n |
| 1 |
| n2 |
∴当n≥2时,
| S | 2n |
| S | 2n-1 |
| 2Sn |
| n |
| 1 |
| n2 |
| S | 2n-1 |
| S | 2n-2 |
| 2Sn-1 |
| n-1 |
| 1 |
| (n-1)2 |
| S | 22 |
| S | 21 |
| 2S2 |
| n |
| 1 |
| 22 |
累加得:
| S | 2n |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
又∵1-(
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
=1-(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
∴Sn2>2(
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
练习册系列答案
相关题目