题目内容
已知数列{an}满足a1=1,a2=
,且[3+(-1)n]an+2=2an-2[(-1)n-1](n=1,2,3,…)
(1)求a3,a4,a5,a6的值及数列{an}的通项公式;
(2)令bn=a2n-1•a2n,记数列{bn}的前n项和为Tn,求证Tn<3.
| 1 |
| 2 |
(1)求a3,a4,a5,a6的值及数列{an}的通项公式;
(2)令bn=a2n-1•a2n,记数列{bn}的前n项和为Tn,求证Tn<3.
(1)分别令n=1,2,3,4
可求得:a3=3,a4=
,a5=5,a6=
当n为奇数时,不妨设n=2m-1,m∈N*,则a2m+1-a2m-1=2.
∴{a2m-1}为等差数列,∴a2m-1=1+(m-1)•2=2m-1即am=n.
当n为偶数时,设n=2m,m∈N*,则2a2m+2-a2m=0.
∴{a2m}为等比数列,a2m=
•(
)m-1=
,故an=(
)
.
综上所述,an=
(2)bn=a2n-1•a2n=(2n-1)•
∴Tn=1×
+3×
+5×
++(2n-1)•
∴
Tn=1×
+3×
++(2n-3)•
+(2n-1)•
,
两式相减:
Tn=
+2[
+
++
]-(2n-1)•
=
+2•
-(2n-1)•
∴Tn=3-
,故Tn<3.
可求得:a3=3,a4=
| 1 |
| 4 |
| 1 |
| 8 |
当n为奇数时,不妨设n=2m-1,m∈N*,则a2m+1-a2m-1=2.
∴{a2m-1}为等差数列,∴a2m-1=1+(m-1)•2=2m-1即am=n.
当n为偶数时,设n=2m,m∈N*,则2a2m+2-a2m=0.
∴{a2m}为等比数列,a2m=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2m |
| 1 |
| 2 |
| n |
| 2 |
综上所述,an=
|
(2)bn=a2n-1•a2n=(2n-1)•
| 1 |
| 2n |
∴Tn=1×
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
∴
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 2n |
| 1 |
| 2n |
两式相减:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 2n+1 |
∴Tn=3-
| 2n+3 |
| 2n |
练习册系列答案
相关题目