题目内容
设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求u=
+
+
的最小值.
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求u=
| x2 |
| x+1 |
| 2y2 |
| y+2 |
| 3z2 |
| z+3 |
(I)当z=1时,∵x+2y+3z=1,∴x+2y=-2,即y=
∴|x+y|+|y+1|>2可化简|x-2|+|x|>4,
∴x<0时,-x+2-x>4,∴x<-1;
0≤x≤2时,-x+2+x>4不成立;
x>2时,x-2+x>4,∴x>3
综上知,x<-1或x>3;
(II)∵(
+
+
)[(x+1)+2(y+2)+3(z+3)]≥(x+2y+3z)2
∴(
+
+
)(x+2y+3z+14)≥(x+2y+3z)2,
∴
+
+
≥
∴u≥
,当且仅当
=
=
,又x+2y+3z=1,即x=
,y=
,z=
时,umin=
.
| -2-x |
| 2 |
∴|x+y|+|y+1|>2可化简|x-2|+|x|>4,
∴x<0时,-x+2-x>4,∴x<-1;
0≤x≤2时,-x+2+x>4不成立;
x>2时,x-2+x>4,∴x>3
综上知,x<-1或x>3;
(II)∵(
| x2 |
| x+1 |
| 2y2 |
| y+2 |
| 3z2 |
| z+3 |
∴(
| x2 |
| x+1 |
| 2y2 |
| y+2 |
| 3z2 |
| z+3 |
∴
| x2 |
| x+1 |
| 2y2 |
| y+2 |
| 3z2 |
| z+3 |
| 1 |
| 15 |
∴u≥
| 1 |
| 15 |
| x |
| x+1 |
| y |
| y+2 |
| z |
| z+3 |
| 1 |
| 14 |
| 1 |
| 7 |
| 3 |
| 14 |
| 1 |
| 15 |
练习册系列答案
相关题目