题目内容
设函数f(x)=x2-1+cosx(a>0).
(1)当a=1时,证明:函数y=f(x)在(0,+∞)上是增函数;
(2)若y=f(x)在(0,+∞)上是单调增函数,求正数a的范围.
已知函数f(x)=sinx(>0).
(1)若y=f(x)图象过点(,0),且在区间(0,)上是增函数,求的值.
(2)先把(1)得到的函数y=f(x)图象上各点的纵坐标伸长为原来的2倍,(横坐标不变);再把所得的图象向右平移个单位长度,设得到的图象所对应的函数为,求当时,的最大和最小值。
若y=f(x)是定义在(0,+∞)上的单调减函数,且f(x)<f(2x-2),则x的取值范围______
(理科)已知函数=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;
(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).