题目内容
“直线l垂直于平面α内的无数条直线”是“l⊥α”的
必要不充分条件
必要不充分条件
.分析:直线l垂直于平面α内的无数条直线,若无数条直线是平行线,则l与α不一定平行,如果l⊥α,根据线面垂直的性质可知直线l垂直于平面α内的无数条直线,最后根据“若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件”可得结论.
解答:解:直线l垂直于平面α内的无数条直线,若无数条直线是平行线,则l与α不一定平行,
如果l⊥α,根据线面垂直的性质可知直线l垂直于平面α内的无数条直线.
故“直线l垂直于平面α内的无数条直线”是“l⊥α”的必要不充分条件.
故答案为:必要不充分条件.
如果l⊥α,根据线面垂直的性质可知直线l垂直于平面α内的无数条直线.
故“直线l垂直于平面α内的无数条直线”是“l⊥α”的必要不充分条件.
故答案为:必要不充分条件.
点评:本题主要考查了直线与平面垂直的判定,以及必要条件、充分条件与充要条件的判断,同时考查了化归与转化的数学思想方法,以及空间想象能力、推理论证能力,属于基础题.
练习册系列答案
相关题目