题目内容
直线l过抛物线y2=x的焦点,且l与抛物线交于A,B两点,若|AB|=4,则弦AB的中点到y轴的距离为________.
分析:确定抛物线的准线方程,利用抛物线的定义及弦长,可得弦AB的中点到准线的距离,进而可求弦AB的中点到y轴的距离.
解答:由题意,抛物线y2=x的焦点坐标为(
根据抛物线的定义,∵|AB|=4,∴A、B到准线的距离和为4
∴弦AB的中点到准线的距离为2
∴弦AB的中点到y轴的距离为2-
故答案为:
点评:本题考查抛物线的定义,考查学生的计算能力,正确运用抛物线的定义是关键.
练习册系列答案
相关题目
设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
| A、y2=±4x | B、y2=4x | C、y2=±8x | D、y2=8x |
已知斜率为2的直线l过抛物线y2=ax的焦点F,且与y轴相交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
| A、y2=4x | B、y2=8x | C、y2=4x或y2=-4x | D、y2=8x或y2=-8x |