题目内容

已知函数f(x)=x3-x2+bx+c.

(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;

(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.

(1)b≥(2)c的取值范围为(-∞,-1)∪(2,+∞).


解析:

  (1)f′(x)=3x2-x+b,因f(x)在(-∞,+∞)上是增函数,则f′(x)≥0.即3x2-x+b≥0,

∴b≥x-3x2在(-∞,+∞)恒成立.设g(x)=x-3x2.

当x=时,g(x)max=,∴b≥.

(2)由题意知f′(1)=0,即3-1+b=0,∴b=-2.

x∈[-1,2]时,f(x)<c2恒成立,只需f(x)在[-1,2]上的最大值小于c2即可.

因f′(x)=3x2-x-2,令f′(x)=0,得x=1或x=-.∵f(1)=-+c,

f()=+c,f(-1)=+c,f(2)=2+c.

∴f(x)max=f(2)=2+c,∴2+c<c2.解得c>2或c<-1,所以c的取值范围为(-∞,-1)∪(2,+∞).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网