题目内容
已知函数f(x)=x3-
x2+bx+c.
(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;
(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.
(1)b≥
(2)c的取值范围为(-∞,-1)∪(2,+∞).
解析:
(1)f′(x)=3x2-x+b,因f(x)在(-∞,+∞)上是增函数,则f′(x)≥0.即3x2-x+b≥0,
∴b≥x-3x2在(-∞,+∞)恒成立.设g(x)=x-3x2.
当x=
时,g(x)max=
,∴b≥
.
(2)由题意知f′(1)=0,即3-1+b=0,∴b=-2.
x∈[-1,2]时,f(x)<c2恒成立,只需f(x)在[-1,2]上的最大值小于c2即可.
因f′(x)=3x2-x-2,令f′(x)=0,得x=1或x=-
.∵f(1)=-
+c,
f(
)=
+c,f(-1)=
+c,f(2)=2+c.
∴f(x)max=f(2)=2+c,∴2+c<c2.解得c>2或c<-1,所以c的取值范围为(-∞,-1)∪(2,+∞).
练习册系列答案
相关题目