题目内容

已知f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a+b=______.
∵函数f(x)=ax2+bx+3a+b是定义域为[a-1,2a]的偶函数
∴其定义域关于原点对称,故a-1=-2a,
又其奇次项系数必为0,故b=0
解得 a=
1
3
,b=0
∴a+b=
1
3

故答案为:
1
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网