题目内容
(Ⅰ)写出数列{an}的一个递推关系式;
(Ⅱ)证明:{an+1-3an}是等比数列;并求出{an}的通项公式;
(Ⅲ)求数列{n(an+3n-1)}的前n项和Tn.
分析:(Ⅰ)依题意,由程序框图即可写出数列{an}的一个递推关系式;a1=a2=1,
(Ⅱ)令an+2-man+1=p(an+1-an),依题意可求得m=3,p=2,利用等比数列的定义可证:{an+1-3an}是等比数列;利用累加法可求出{an}的通项公式;
(Ⅲ)由(Ⅱ)知an=2n-3n-1,利用错位相减法即可求得Tn.
(Ⅱ)令an+2-man+1=p(an+1-an),依题意可求得m=3,p=2,利用等比数列的定义可证:{an+1-3an}是等比数列;利用累加法可求出{an}的通项公式;
(Ⅲ)由(Ⅱ)知an=2n-3n-1,利用错位相减法即可求得Tn.
解答:解:(Ⅰ)依题意,a1=a2=1,an+2=5an+1-6an;
(Ⅱ)令an+2-man+1=p(an+1-man),则
,
解得m=3,p=2或m=2,p=3.
取m=3,p=2,则
=2,又a2-3a1=1-3=-2,
∴{an+1-3an}是以-2为首项,2为公比的等比数列,
∴an+1-3an=(-2)•2n-1=-2n.
∴
-
=-
•(
)n.
∴
-
=-
•(
)n-1,
…
-
=-
•(
)1,
∴
-
=-
[(
)1+(
)2+…+(
)n-1]=-
×2[1-(
)n-1]=-
+(
)n.
∴
=-
+(
)n,
∴an=2n-3n-1.
(Ⅲ)∵an=2n-3n-1,
∴an+3n-1=2n,
∴Tn=1×2+2×22+3×23+…+n×2n,①
2Tn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得:-Tn=2+22+23+…+2n-n×2n+1=
-n×2n+1=2n+1(1-n)-2,
∴Tn=(n-1)•2n+1+2.
(Ⅱ)令an+2-man+1=p(an+1-man),则
|
解得m=3,p=2或m=2,p=3.
取m=3,p=2,则
| an+2-3an+1 |
| an+1-3an |
∴{an+1-3an}是以-2为首项,2为公比的等比数列,
∴an+1-3an=(-2)•2n-1=-2n.
∴
| an+1 |
| 3n+1 |
| an |
| 3n |
| 1 |
| 3 |
| 2 |
| 3 |
∴
| an |
| 3n |
| an-1 |
| 3n-1 |
| 1 |
| 3 |
| 2 |
| 3 |
…
| a2 |
| 32 |
| a1 |
| 31 |
| 1 |
| 3 |
| 2 |
| 3 |
∴
| an |
| 3n |
| a1 |
| 31 |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
∴
| an |
| 3n |
| 1 |
| 3 |
| 2 |
| 3 |
∴an=2n-3n-1.
(Ⅲ)∵an=2n-3n-1,
∴an+3n-1=2n,
∴Tn=1×2+2×22+3×23+…+n×2n,①
2Tn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得:-Tn=2+22+23+…+2n-n×2n+1=
| 2(1-2n) |
| 1-2 |
∴Tn=(n-1)•2n+1+2.
点评:本题考查数列求和,着重考查等比关系的确定,突出考查累加法与错位相减法求和,考查转化思想与创新能力,求{an}的通项公式是难点,属于难题.
练习册系列答案
相关题目